Structure of the SEBoK

The Guide to the Systems Engineering Body of Knowledge (SEBoK) is a living authoritative guide that discusses knowledge relevant to Systems Engineering. SEBoK does not contain all of this knowledge itself, but provides a starting point and key resources to allow the reader to navigate the wider body of knowledge that exists in published sources. To do this SEBoK:

- Defines relevant knowledge and structures it to facilitate understanding.
- Provides short discussions of key idea, principles and concepts within that structure.
- Points to reference sources important to the discipline, which explore these ideas in more detail.

In doing this it is inevitable that differences in terminology, alternative approaches and even fundamentally different ways of thinking within the knowledge will appear. SEBoK attempts were possible to provide clarity of similar or overlapping idea, or to highlight real differences and the reasons behind them. In particular the SEBoK Glossary of Terms contains the most used or generally agreed definitions of terms when it can, but may highlight more than one definition if needed to show breadth of current thinking.

Contents

1 SEBoK Structure
2 Overview of Parts
 - 2.1 Part 1: SEBoK Introduction
 - 2.2 Part 2: Foundations of Systems Engineering
 - 2.3 Part 3: Systems Engineering and Management
 - 2.4 Part 4: Applications of Systems Engineering
 - 2.5 Part 5: Enabling Systems Engineering
 - 2.6 Part 6: Related Disciplines
 - 2.7 Part 7: Systems Engineering Implementation Examples
 - 2.8 Addenda
3 References
 - 3.1 Works Cited
 - 3.2 Primary References
 - 3.3 Additional References

SEBoK Structure

Figure 1, below, gives a summary of the 7 parts of the SEBoK and how they are related.
The scope of each part and the key relationships amongst them is briefly discussed below. For a more detailed discussion of how this structure was evolved see (Adcock et al, 2016).

Overview of Parts

Part 1: SEBoK Introduction

This part explains the scope, context, and structure of the SEBoK, and of systems engineering (SE).

An overview of who should use the SEBoK, and for what purpose, is followed by detailed use cases. The economic value, history, and relationship to other disciplines are discussed. Part 1 also contains a section which discussed the future evolution of the SEBoK and allows for new areas of content to be introduced before being transitioned into other SEBoK parts.

Part 2: Foundations of Systems Engineering

This part provides an introduction and overview of areas of knowledge which provide the foundations of SE.

A discussion of the definitions and basic concepts of system is followed by an overview of the principles, concepts, methods, models and patterns of some of the key foundational areas of systems science. This includes a detailed consideration of the foundational knowledge related to systems models and modelling.

Part 2 looks in more detail at two aspects of this foundational knowledge of particular value to SE.
The first is to discuss aspects of systems knowledge related to a systems approach to complex problems and opportunities. This approach provides foundations for how SE is defined and practices (see Parts 3 and 5 below). The second is to describe the different ways in which system concepts are applied to real world concerns. The SEBoK defines an engineered system (ES) as the primary focus for the application of SE (see Part 4 below).

Part 3: Systems Engineering and Management

This part describes generic knowledge on the practice of SE and related management activities.

Part 3 begins with the life cycle models common in SE and the general principles behind their application. It then moves on to SE management activities. Covering both technical activities such as requirements, architecture, test and evaluation; and management activities such as planning, measurement, risk. Next is product and service life management, a distinct area of SE management that emphasizes the entire life cycle including retirement and disposal. An account of SE standards concludes this part.

Focused on what many think of as the main body of SE, including best practices and common pitfalls, this part constitutes a substantial proportion of the SEBoK. As already discussed, the knowledge in Part 3 is based on the systems approach from Part 2. The links between Part 3 and the other parts of the SEBoK are discussed below.

Part 4: Applications of Systems Engineering

This part describes how to apply SE principles to different types of system context.

Part 4 focuses on four major engineered system contexts in turn: products, services, enterprises, and systems of systems (SoS). For each one the system abstraction, commercial relationships and application of generic SE is described.

The generalized contexts above should be viewed as overlapping models of how SE can be applied in different kinds of situation. Combinations of one or more of them are fully realized when applied in an application domain. Part 4 currently described this application in a small number of such domains. This will be expanded in later updates. The applications of SE in this part describe the real world practice of SE. The generalized knowledge in both Parts 2 and 3 evolves through what we learn from these applications. Part 2 includes a discussion of this relationship between theory and practice.

Part 5: Enabling Systems Engineering

This part describes how to organize to enable the success performance of SE activities.

Part 4 covers knowledge at the enterprise, team, or individual level. The range of considerations extends from value proposition, business purpose, and governance, down to competency, personal development as a systems engineer, and ethics.

All of these relate to the baseline definitions of SE in Part 3, further generalized in the levels of application in Part 4. The systems approach in Part 2 should also form a foundation for this part. Since the practice of SE is transdisciplinary, Part 5 also has a link to Part 6 as discussed below.

Part 6: Related Disciplines

This part describes the relationships between SE and other disciplines.

Part 6 covers the links between SE and software engineering (SwE), project management (PM), industrial engineering and procurement. It also describes how SE is related to specialty engineering, which describes the various system “-ilities” (like reliability, availability, and maintainability) that SE must balance and integrate.
The knowledge in this part provides an interface to other bodies of knowledge, focused on how it is linked to Parts 3, 5 and 5 above.

Part 7: Systems Engineering Implementation Examples

A set of real-world examples of SE activities forms the natural conclusion of the SEBoK. These come in two forms: case studies, which refer the reader to and summarize published examinations of the successes and challenges of SE programs, and vignettes, which are brief, self-contained wiki articles. This part is a key place to look within the SEBoK for lessons learned, best practices, and patterns. Many links connect material in the examples to the conceptual, methodological, and other content elsewhere in the SEBoK.

Addenda

The SEBoK contains a Glossary of Terms, which provides authoritatively-referenced definitions of key terms. This information is displayed when the reader hovers the mouse pointer over a glossary term within an article. It also contains a list of Primary References, with additional information about each reference. Quicklinks in the left margin provide additional background information, including a table of contents, a listing of articles by topic, and a list of Acronyms.

References

Works Cited

Primary References

None.

Additional References

None.

< Previous Article | Parent Article | Next Article >

SEBoK v. 2.1, released 31 October 2019

- This page was last edited on 28 October 2019, at 08:48.